
Техническое задание
Проект: «Клон Discord» — рабочий мессенджер с серверами и каналами

Важно: сделать максимально похожий по UX, без использования чужих
логотипов/иконок/ассетов.

1. Цель работы
Разработать веб-приложение — аналог Discord: система «серверов» (сообществ),
каналов (текст/голос), личных сообщений, ролей и прав доступа, обмена
файлами и уведомлений. Приложение должно работать в реальном времени.

2. Модули проекта и уровень реализации
•MVP (обязательная часть): авторизация, серверы, текстовые каналы, личные
сообщения, роли/права, WebSocket-чат, базовые уведомления.

•Advanced (по возможности): голосовые каналы (WebRTC), видеозвонки (опц.),
стрим экрана (опц.), пуш-уведомления (опц.).

Требование «как в Discord» трактуется как: максимально похожий интерфейс и
ключевые сценарии. Полный функциональный паритет с оригинальным Discord не
обязателен для учебного проекта.

3. Роли и права
•Пользователь: общение, вступление на сервер по приглашению, отправка
сообщений/файлов, реакции.

•Модератор: удаление сообщений, мут/бан пользователей, управление
каналами (по правам).

•Владелец сервера: создание/удаление каналов, управление ролями,
приглашения, настройки сервера.

•Администратор системы (опц.): управление пользователями/жалобами/логами
на уровне всей платформы.

4. Основной сценарий пользователя
•Регистрация/вход.

•Просмотр списка серверов слева (как в Discord).

•Переход в сервер → выбор канала → общение в реальном времени.

•Личные сообщения (DM) между пользователями.

•Отправка файлов/картинок в чат.

•Создание приглашения (invite link) для входа на сервер.

5. Функциональные требования (MVP)
•Авторизация: регистрация, вход, выход, восстановление пароля (опц.).

•Серверы: создание сервера, редактирование названия/иконки, список
участников.



•Приглашения: генерация ссылки-приглашения, вступление по ссылке, срок
действия/лимит (опц.).

•Каналы: текстовые каналы (обязательно), категории каналов (опц.).

•Сообщения: отправка/получение в реальном времени (WebSocket),
редактирование/удаление (по правам).

•Реакции: добавление реакции (emoji) к сообщению (минимум 5 стандартных).

•Упоминания: @user в тексте и подсветка (минимум).

•Поиск: поиск по сообщениям в текущем канале (минимум).

•Файлы: прикрепление изображений/файлов (ограничение размера).

•Статусы: онлайн/оффлайн/не беспокоить (минимум онлайн/оффлайн).

6. Голосовые каналы (Advanced, по возможности)
•Голосовые комнаты внутри сервера (подключение/отключение).

•Технология: WebRTC (допускается peer-to-peer для малых групп).

•Индикатор участников голосового канала.

Если WebRTC слишком сложно, допускается выполнить только MVP (текстовые каналы)
при условии высокого качества UI/UX и стабильной работы WebSocket.

7. UI/UX требования
•Интерфейс максимально похож на Discord по расположению зон: серверы
слева, каналы, чат, участники.

•Темная тема по умолчанию (как в Discord) + светлая тема (опционально).

•Адаптивность: Desktop обязателен; Mobile — упрощенный режим допускается.

•Индикация набора текста (typing indicator) — опционально.

8. Хранимые данные (MySQL, минимум)
•users: id, username, email/login, password_hash, avatar_url, status, created_at.

•servers: id, owner_id, name, icon_url, created_at.

•server_members: server_id, user_id, role_id, joined_at.

•roles: id, server_id, name, color (опц.), permissions_json.

•channels: id, server_id, type(text/voice), name, position, created_at.

•messages: id, channel_id, author_id, content, attachments_json (опц.), created_at,
edited_at (опц.).

•reactions: id, message_id, user_id, emoji.

•dm_threads: id, user1_id, user2_id, created_at.

•dm_messages: id, thread_id, author_id, content, created_at.

•invites: id, server_id, token, created_by, expires_at (опц.), max_uses (опц.),
uses_count.



9. Реальное время и API
•REST API для операций (серверы/каналы/профиль/роли).

•WebSocket для событий: сообщения, редактирование/удаление, реакции,
статусы онлайн.

•Обязательный reconnect на фронтенде при разрыве соединения.

10. Технические требования
•Frontend: React (рекомендуется) или HTML/CSS/JS.

•Backend: Node.js (Express/Fastify) — рекомендуется для WebSocket.

•База данных: MySQL.

•Хранение файлов: локально на сервере или S3-совместимо (опционально).

•Безопасность: пароли только hash, проверка прав доступа на сервере, защита
приватных каналов.

•README: установка, запуск, переменные окружения, миграции/seed.

11. Ограничения
•Запрещено использовать оригинальные ассеты Discord (логотипы, иконки,
UI-ресурсы).

•Допускается визуальное сходство по структуре интерфейса и логике
сценариев.

•Для учебного проекта допускается ограничение по нагрузке (например до
100–300 пользователей тестовой базы).

12. Результат работы
•Рабочее веб-приложение с серверами, текстовыми каналами и
WebSocket-чатом.

•Демонстрация: 2 пользователя общаются в одном канале в реальном
времени, работают роли/права.

•Приглашение по ссылке и вступление на сервер.

•Исходный код + база данных (миграции/seed).

•Опционально: голосовые каналы (WebRTC).

13. Критерии оценки
•Стабильность реального времени (WebSocket), корректная работа каналов и
сообщений.

•Качество интерфейса (похожесть на Discord по UX, аккуратность).

•Роли и права (ограничения действий, приватные каналы по правам).

•Качество кода и структуры проекта, наличие README.

•Опционально (плюс): голосовые каналы, индикатор печати, пуш-уведомления.


