
Техническое задание
Проект: Система управления тестами и викторинами (простая) — админ-панель

1. Цель работы
Разработать веб-приложение для создания и управления тестами/викторинами:
администратор (преподаватель) создаёт тесты, вопросы и варианты ответов,
отмечает правильные. Данные хранятся в MySQL. По тесту формируется ссылка
для прохождения студентом.

2. Роли
•Преподаватель/Администратор: создаёт и редактирует тесты, вопросы и
ответы.

•Студент (опционально): проходит тест по ссылке и получает результат.

3. Основной сценарий (админ-панель)
•Администратор входит в систему.

•Создаёт новый тест (название, описание, настройки).

•Добавляет вопросы теста.

•Для каждого вопроса добавляет варианты ответов и отмечает правильные.

•Сохраняет тест и получает ссылку на прохождение.

4. Функциональные требования (администратор)
•Авторизация администратора (логин/пароль).

•CRUD тестов: создать/просмотреть/редактировать/удалить тест.

•CRUD вопросов: добавить/редактировать/удалить вопрос внутри теста.

•CRUD ответов: добавить/редактировать/удалить варианты ответов.

•Возможность отметить один правильный вариант (single-choice) или
несколько (multi-choice) — на выбор проекта.

•Публикация теста: тест имеет статус черновик/опубликован.

•Ссылка на прохождение: уникальный URL вида /quiz/{public_id}.

5. Требования к редактору вопросов (React UI)
•Удобный интерфейс добавления вопросов.

•Динамическое добавление/удаление вариантов ответа.

•Валидация: вопрос не может быть пустым; минимум 2 варианта ответа;
должен быть выбран правильный ответ.

•Предпросмотр теста (опционально).



6. Функциональные требования (страница прохождения теста) —
опционально

•Студент открывает ссылку и видит тест.

•Проходит вопросы и отправляет ответы.

•Система автоматически проверяет ответы и показывает результат:
количество правильных, процент, оценка (опционально).

•Сохранение попытки прохождения (опционально): кто проходил, когда,
результат.

7. Структура данных (MySQL, минимум)
•tests: id, title, description, status(draft/published), public_id, created_at,
updated_at.

•questions: id, test_id, text, type(single/multi), position, created_at.

•answers: id, question_id, text, is_correct(0/1), position.

•attempts (опционально): id, test_id, user_name/anon_id, started_at, finished_at,
score.

•attempt_answers (опционально): attempt_id, question_id, answer_id.

8. API и логика проверки
•Backend должен предоставлять REST API для админки (CRUD
тестов/вопросов/ответов).

•Публичный endpoint для получения теста по public_id.

•Если реализована страница прохождения: endpoint для отправки ответов и
расчёта результата.

•Проверка: сравнение выбранных ответов с is_correct.

9. Технические требования
•Frontend: React (админ-панель обязательно).

•Backend: Node.js или PHP.

•База: MySQL.

•Защита админки авторизацией.

•README: установка, миграции/создание таблиц, запуск frontend/backend,
тестовый аккаунт админа.

10. Ограничения
•Личный кабинет студента не требуется (достаточно доступа по ссылке).

•Сложные типы вопросов (соответствие, ввод текста) — не обязательны.

•Достаточно 1–2 типов вопросов: single-choice или multi-choice.

11. Результат работы



•Рабочая админ-панель: создание теста → вопросы → ответы → публикация →
ссылка.

•Демонстрация на тесте минимум из 5 вопросов.

•Опционально: страница прохождения и автоматическая проверка.

•Исходный код и база данных.

12. Критерии оценки
•Корректный CRUD тестов/вопросов/ответов в MySQL.

•Удобный React-редактор вопросов (динамические варианты, валидация).

•Стабильная работа ссылок на тест и публикации.

•Аккуратный UI и структура проекта.

•Опционально (плюс): сохранение попыток и результаты прохождения.


