
Техническое задание
Проект: Веб-аналитика сайта (простая) — аналог Google Analytics (упрощённо)

1. Цель работы
Разработать систему веб-аналитики для сайта: сбор событий посещаемости
через небольшой JS-скрипт, сохранение данных на backend в MySQL и
отображение метрик в виде дашборда (React).

2. Состав системы
•Tracking-скрипт (JS snippet), который вставляется на отслеживаемый сайт.

•Backend (Node.js) с API для приёма событий и выдачи агрегированных метрик.

•База данных MySQL для хранения сырых событий и агрегатов.

•Dashboard (React) для отображения статистики и графиков.

3. События и данные, которые нужно собирать
•Просмотр страницы (pageview): URL/путь страницы, реферер (источник),
время, session_id.

•Сессия: время начала, время последней активности, длительность (в
секундах).

•Источник трафика: referrer + UTM-метки (utm_source, utm_medium,
utm_campaign).

•Устройство: user-agent (упрощённо: браузер/ОС), тип устройства
(desktop/mobile) — опционально.

•География: страна (по IP на сервере).

Сбор персональных данных не требуется. Достаточно session_id (случайный
идентификатор) и технических параметров.

4. Требования к tracking-скрипту (JS snippet)
•Подключение одной строкой: <script src=".../tracker.js"></script>

•Автоматически отправлять событие pageview при загрузке страницы.

•Отправлять событие «время на сайте» (например, раз в 10–15 секунд
heartbeat) или при закрытии вкладки (sendBeacon).

•Хранить session_id в localStorage или cookie.

•Работать без зависимостей (чистый JS).

5. Backend (Node.js) — приём и хранение
•REST endpoint для приёма событий (например POST /api/track).

•Валидация входных данных и защита от спама (rate limit).

•Определение страны по IP (GeoIP база/библиотека).



•Запись сырых событий в MySQL.

•Периодическая агрегация данных (cron/планировщик) по дням.

6. Метрики, которые должен показывать дашборд
•Посетители в день (уникальные сессии).

•Просмотры страниц (pageviews) в день.

•Среднее время на сайте (по сессиям).

•Процент отказов (bounce rate): сессии с 1 просмотром страницы.

•Источники трафика (рефереры/UTM) — таблица топ-источников.

•Популярные страницы — топ URL по просмотрам.

•География: распределение по странам (таблица + простая
карта/визуализация).

7. Интерфейс дашборда (React)
•Главная: карточки KPI (посетители, просмотры, отказ, среднее время).

•График динамики по дням (посетители/просмотры).

•Раздел «Источники» (таблица/диаграмма).

•Раздел «Страницы» (топ страниц).

•Раздел «География» (таблица + карта по странам, можно упрощённую).

•Фильтры: период (7/30/90 дней), (опц.) фильтр по UTM-кампании.

8. Структура БД (MySQL, минимум)
•events: id, session_id, event_type, path/url, referrer, utm_json, user_agent, country,
created_at.

•sessions: session_id, first_seen_at, last_seen_at, duration_sec, pageviews_count,
country, referrer, utm_json.

•daily_stats: date, visitors, pageviews, bounces, avg_duration_sec.

•daily_pages: date, path, pageviews.

•daily_sources: date, source, visits.

•daily_countries: date, country, visits.

9. Технические требования
•Frontend: React.

•Backend: Node.js (Express/Fastify).

•База: MySQL.

•CORS и безопасность API (минимум: origin whitelist, rate limit).

•README: как подключить tracker.js на сайт, как запустить backend и
dashboard.



10. Ограничения
•Достаточно поддержки 1 сайта (multi-site — опционально).

•Cookie banner/согласия не реализуются (для учебного проекта).

•Точность гео допускается приближённая (по стране).

11. Результат работы
•Рабочий трекер, который можно вставить на тестовый сайт и собирать
события.

•Backend, который сохраняет данные и отдаёт агрегаты.

•React-дашборд с ключевыми метриками и графиками.

•Демонстрация: посещения тестового сайта отражаются в статистике.

12. Критерии оценки
•Корректный сбор pageview и времени на сайте.

•Стабильное хранение в MySQL и агрегация по дням.

•Понятный дашборд (KPI, графики, таблицы).

•Bounce rate и источники считаются логично.

•Аккуратный код и документация (README).


